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To Rudolf Zahradnik who has always brought Joy and Wisdom to his work. 

Within the Generalized Exchange (GX) LSD scheme, a method to calculate the ionization poten
tial UP) of an atom has been developed involving correction terms to the negative of the eigen
value of the highest occupied atomic orbital (HOAO). These correction terms are evaluated 
non-iteratively using the fully occupied orbitals of the ground state of the neutral atom. Within 
the unrelaxed orbital approx:mation, this corrected eigenvalue [P, [peorr, is completely equi
valent to the Transition State [P, calculated from an SCF calculation at half-occupancy of the 
HOAO, when used with density-functional (DF) schemes that do not include self-interaction. 
The present scheme can also be used with self-interaction corrected DF schemes. In both cases, 
the corrected eigenvalue method of calculating [P's gives good results. The techniques used to 
derive [peorr are applied to derive an expression for the electronegativity of the free atom which 
can be used with both self-interaction and non-self-interaction corrected DF schemes. The 
results of [P and electronegativity calculations for the helium to krypton atoms are reported 
using a variety of DF schemes. These are compared to each other and to the experimental values 
whenever possible. 

In Density-Functional theory, the total energy from Kohn and Sham! is 

EDF = L!i<ui(r)1 f,lui(r) + t IfJ/ui(r) u/r')llui(r) uir'J) + 
i i,j 

• 
+ t L!i<ui(r)1 U~C(r) IUi(r» + s' spin exchange term. (1) 

i 

where f, is the kinetic and nuclear attraction energy operator, - V~ - 2Z/lrl, and 
I I represent the inter-electronic repulsion operator, 2/1r - r'l· The exchange-cor
relation density, U;C(r) in Eq. (1), is the single-particle exchange-correlation den
sity2.3.4. The total energy is minimized with respect to variation in the one-electron 
eigenfunctions, ui(r), preserving normalization, 

. .' 
fn(r) dr = L!i<ui(r)1 ui(r) + Ifi<ulr)1 ui(r» = N. + N., = N, (2) 

i i 
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2280 Manoli, Whitehead: 

where Ns and N s' are the number of sand s' spin electrons, and N the total number 
of electrons. The total electron density n(r) is1 

s s' 

n(r) = Ifilui(r)12 + Ifilui(r)12 . (3) 
i i 

Minimizing the total energy (1) 

{fr + I/i(ulr')llui(r') + VlXC(r)} luk(r» = Bkluk(r) , (4) 
i 

where the one-electron potential, V,,:r.C(r), is 

• 
V:C(r) = to[Ifi(ui(r) 1 UrC(r) lulr» ]!ank(r) (5) 

i 

when the kth electron has spin s, and the one-electron density is 

(6) 

Expression (4) is the one-electron eigenvalue equation to be solved self-consistently 
in Density-Functional theory; Bk is the Lagrange multiplier in the minimization, 
the orbital eigenvalue. 

Slater and Wood3 and Janak4 proved that Bk is obtained directly from 

(7) 

where fk is the kth orbital occupation number, one or zero. Thus the total energy 
is a continuous function of the occupation numbers. Although unphysical, it is 
a very powerful tool for calculating various types of one-electron energies. The one
-electron exchange-correlation potential (5) using Eq. (7) gives 

s 

VkXC(r) = ta[Ifi(U i(r)1 U~C(r) lui(r» ]!afk . (8) 
i 

This expression is evaluated for fk equal to one. 

The LSD GX exchange2 is rewritten to include any self-interaction corrected 
exchange densitiess, this general GX exchange will be labelled GGX, 

U~GX(r) = _9coclim{ ns(r) + Blnlr)} {ns(r) + B2nk(r)} -2/3 + 

+ [ - fk(uk(r')lluk(r'» rl/SIX/S'C + [9cocSln~/3(r)]SI!LSD-SI/SIC . (9) 
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The square bracket superscripts designate which term is present. Thus, the super
script SI!SIX in the second term of Eq. (9) means that the non-local self-interaction 
potential is present in the GX-SI and GX-SIX exchange densities5 . For the GX-SIX 
and GX-LSD-SI exchange densities5 , the Bl parameter in the first term of Eq. (9) 
equals -1. Table I gives the values of the parameters Bb B2 , ~lirn and ~Sl for the 
various exchange densities. The ~Sl in the GX-LSD-SI scheme is negative5 . 

Putting the GGX exchange (9) in the one-electron exchange potential (8) gives the 
GGX one-electron exchange potential 

s 

VkGGX(r) = -¥mlirn{ns(r) + BZni(r)} -Z/3 ni(r) - j I{ns(r) + 
i 

+ Blni(r)} {n.(r) + B2ni(r)} -5/3 ni(r) + {n.(r) + 2Blllk(r)} . 

. {Ilir) + BZnk(r)}-Z/3 - jBz{n.(r) + Blllk(r)} {ns(r) + BZnk(r)}-S/3 nk(r) + 
+ [ - fk<uk(r')lluk(r'» rl/SIX/S'C + [6c~Slni/3(r)]SI/LSD-SI/SIC (10) 

which is used in the one-electron eigenvalue equation (4). 

The LSD GX theory is a generalization of the Xcx theory, therefore the exchange 
potential (10) reduces to the Xcx exchange potential when homogeneous Fermi hole 
parameters are used: with Bl and Bz equal to zero 

(11) 

where IX lim equals 0·866173. Using the approximation 

(12) 

previously discussed2 ,5 the LSD GX exchange potential reduces to 

(13) 

where IXs is a theoretically derived expression, a function of the total number of spin s 
electrons, Ns (refs2 ,6,7), and depends on the Fermi hole parameters B1, B2 and ~lirn 
(refsZ,5). 

The long range behaviour of the one-electron exchange potential must obey8.9 

(14) 

in Rydbergs, for the illhomogeneous electron gas. Consequently, if the exchange 
potential in Eq. (14) is written as the sum of self-interaction and pure-exchange 
components, the pure-exchange must approach zero, while the self-interaction must 
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2282 Manoli, Whitehead: 

approach - 2, 

lim r(V~I(r) + V~XC(r)) = lim rV~I(r) = -2. (15) 
r .... 00 r .... oo 

Applying this limit to the GGX exchange potential (10) gives 

lim rV?GX(r) = [ _2rl/slx/slc (16) 
r .... 00 

and zero for any other potential. Only the GX-SI and GX-SIX potentials, (or any 
potential corrected for self-interaction using the SIC scheme9 such as the SIC-FE 
exchange potential) contain the correct, non-local self-interaction potential which 
approaches the correct limit as r gets large. 

TABLE I 

The parameters BI , B2 , oclim and OCSI for the various theories discussed in refs2,5 

Theory Bl B2 oc lim ocS) 

Xcx 0'0 0'0 variable 0'0 
FEa 0'0 0'0 2/3 0'0 
SIC-FE 0'0 0'0 2/3 2/3 
GX/FELb 3·178952 4'768428 2/3 0'0 
GX/Wh 2'514776 3·772148 0'698526 0'0 
GX/GWBh 2'0 3·0 0'727539 0'0 
GX/Hb 0'0 0'0 0'866173 0'0 
GX-SI/FEL 3'178952 4'768428 2/3 0'866173 

GX-SI/W 2'514776 3'772147 0·698526 0'866173 
GX-SI/GWB 2-0 3-0 0'727539 0'866173 
GX-SI/H 0-0 0-0 0'866173 0'866173 
GX-SIX/FEL -1-0 4-768428 2/3 0'0 
GX-SIX/W -1'0 3'772147 0'698526 0'0 
GX-SIX/GWB -1'0 3-0 0·727539 0'0 

GX-SIX/H -1,0 0-0 0·866173 0'0 
GX-LSD-SI/FEL -1'0 4'768428 2/3 -0'866173 
GX-LSD-SI/W -1-0 3'772147 0'698526 -0'866173 
GX-LSD-SI/G WB -1'0 3-0 0'727539 -0,866173 
GX-LSD-SI/H -1-0 0'0 0'886173 -0'866173 

a Free electron gas exchange density; b free electron limit; Wigner6 , Gopinathan, Whitehead 
and Bogdanovic 7 and the Homogeneous Fermi Hole parameters2. 
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Generalized Exchange Local-Spin DF Theory 2283 

THEORETICAL 

Ionization Potentials 

The ionization potential (lP) is the energy to remove an electron from an atom to 
infinity 

(l7) 

where E+ is the positive ion total energy and EO the neutral atom energy. Using the 
GGX exchange, the neutral atom total energy, EGGXo, is 

• s' 

+ 1- If;(u;(r)1 V?GXO(r) lu;(r» + 1- If;(u;(r)1 V~iGXO(r) lu;(r» , (18) 
i i 

where the single-particle exchange is given by Eq. (9). The total energy of the positive 
ion, EGGx+, is 

.'1 S' 

+ -1 If;(ui(r)1 V?Gx+(r) lu;(r» + -l Ifi(ui(r)1 V?Gx+(r) lu;(r» , (19) 
i*k i 

where the kth electron, with spin s, has been removed. The ionization potential of 
the klh electron is calculated by subtracting the total energy of the neutral species 
(Eq. (18» from the total energy of the positive ion (Eq. (19». Neglecting relaxation 
of orbitals upon ionization, terms common to the total energy equations of the posi
tive and neutral species cancel. Hence, 

J S 

- -! I f;(ui(r) I V?GXO(r) Iui(r» + t Ifi(u;(r)1 V?GX+(r) lu;(r» + 
i=k i*k 

(20) 

where Y:(uk(r) uk(r')lluk(r) uk(r'» has been added and subtracted in Eq. (20) to 
remove the =F k condition in the Coulomb repulsion term. 

Writing the total positive ion electron density in terms of the total neutral atom 
electron density gives 

(21) 
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Consequently the single-particle exchange density of the positive ion is 

U?GX+(r) = -9cC(lim{n~(r) - n,,(r) + Bt ll j(r)} {1I~(r) - 11,,(r) + B2nj(r)} -2/3 + 

+ [ - fi<ui(r/)llui(r/) YI/SIX/SIC + [9cC(S'n}/3(r)]SI/LSO-SI/SIC . (22) 

The last factor in the first term can be expanded using the binomial theorem tO , to give 

{n~(r) - nir) + B2n;{r)} -2/3 = {n~(r) + B2ni(r)} -2/3 x 

X {1 - nk(r)/(n~(r) + B2n;(r))}-2/3 = {n~(r) + B2n;{r)}-2 /3 x 

x {1 + tnk(r)/(n~(r) + B2nj(r)) + ~[I1,,(r)/(I1~(r) + B211i(r))]2 + 

+ (40/81) [n,,(r)/(I1~(r) + B211;(r))J3 + .. } (23) 

substituting Eq. (23) in the IP equation (20), the resulting equation can be expressed 
in terms of the GGX eigenvalue equation defined by Eqs (4) and (10) and other 
terms expressed as brackets of powers of the wavefunction uk(r) and its corresponding 
occupation number fk as 

IPk = -13k + [!<uk(r) u,,(r')lluk(r) uk(r/) ]GX/LSO-Sl + 

+ [tCC(SI<uk(r)I 11: /3 (r) Iuk(r) r/LSO-SI/SIC -

- }cC(lim(1 + Bt) <u~(r)1 {n~(r) + B211k(r)} -2/3 lu~(r) + 

+ lCC(lim t(1 + B2) <u~(r)1 {n~(r) + B211k(r)} - 5/3 {11~(r) + Bl llk(r)} lu~(r) + 
s 

+ }cC(lim t<u~(r)1 L {n~(r) + B211i(r)} - 5/3 ni(r) luUr) -
i*k 

s 

- lcC(lim ~<u;(r)1 I {n~(r) + B211 j(r)} -8/3 {n~(r) + Btlli(r)} lui(r) + 
i*k 

s 

+ }CC(lim ~<ui(r)1 L {11~(r) + B2hi(r)} -8/3 ni(r) lui(r) -
i*k 

s 

- }cC(lim(40j81) <ui(r)1 L {n~(r) + B2nj(r)} -11/3 x 
j*k 

(24) 

where ui(r) terms are included, but ut(r) terms are not. The third term in Eq. (24) 
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Generalized Exchange Local-Spin DF Theory 2285 

is the IP-LSD-SI correction, the fourth term the lSI IP correction, the fifth term the 
2nd IP correction, the sixth and seventh terms together the 3rd IP correction, and the 
eight and ninth terms the 4th IP correction. Equation (24) defines the unrelaxed JP. 

The 4th IP correction is small, of the order of [nk(r)ln~(r)r, and can be neglected. 
Gopinathan lo, using this approach to derive the relationship between the XCX eigen
value and the IP, found 

(25) 

which are the first two terms in Eq. (24). He assumed the remaining terms negligible. 
This is not true; in the non-self-interaction corrected LSD GX scheme, the 1"1 cor
rection term has a specific role. If the expression 

(26) 

is substituted for B l , the result is the local self-interaction potential in the exchange 
density of the klh electron5 • This term cancels the approximate local self-interaction 
potential present in the one-electron exchange potential for the eigenvalue Bk• This 
is then compensated by including the non-local self-interaction integral in the IP 
expression. 

Therefore, the lSI I P correction to the eigenvalue Bk is of the same order of magni
tude as the self-interaction integral and not negligible. Nor is the 2nd IP correction, 
being of the same order of magnitude as the lSI I P correction, and hence, even though 
they have different signs, there is no reason to assume that they would not contribute 
significantly to the IP. Since the 3rd IP correction also varies as n~(r), it cannot be 
neglected. 

It is useful to estimate the magnitude and sign of the corrections in the various 
schemes. The approximation 

(27) 

as well as the B l , B2 and IX lim parameters of the Homogeneous Fermi Hole will be 
used to simplify evaluation of terms in Eq. (24). This gives 

IPk ~ -Bk + G<uk(r) uk(r')lluk(r) uk(r') ]GX/LSO-SI + 

+ [iCIXS\Uk(r) I ni /3(r) Iuk(r) ]SI/LSO-SI/SIC -

- iCIXlimN;2/3<Uk(r)1 n~/3(r) Iuk(r) [ -2(1 _ l!Ns)]SIX/LSO-SI + 

+ icrxlimN;2J3<Uk(r)1 n~1/3(r) Iuk(r) t(1 - tiNs) [1 + 5!NsrIX/LSO-SI. 
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2286 Manoli, Whitehead: 

The corrections in this equation can be expressed in terms of the self-interaction 
integral using the inequality of Gadre, Bartolotti and Handy5.9.11 

t "LfJ/u;(r) uj(r')llu;(r) uir'» ~ 2'184N- 2 / 3 Sn4/3(r) dr (29) 
i,j 

and hence. 

(30) 

where A is a constant, and B depends on the total number of spin s electrons N s • 

Table II gives the values of A and B for the various schemes. To compare the effect 
of the corrections to the eigenvalue in the different schemes, the factor {A + BN;2/3} 

has been plotted versus N., the number of spin s electrons, Fig. 1. The negative of 
the LSD GX and LSD FE eigenvalues have the largest corrections; neither scheme 
contains the correct local, or non-local, self-interaction potential. The largest cor
rection is the exact, non-local, self-interaction potential since it contributes the 
coefficient A equal to 1/2. The negative of the GX-LSD-SI eigenvalue has smaller 
corrections even though the largest correction is the exact self-interaction potential, 
because the latter is partially cancelled by the IP-LSD-SI correction. The negative 
of the SIC-FE and GX-SI eigenvalue have smaller corrections and the negative of 
the GX-SIX eigenvalue has the smallest corrections for large atoms, with a limiting 
value of zero. 

Similar9 •10 comparisons have been made for the X<x and SIC-FE schemes, assuming 
the BN s- 2/3 portion of the corrections negligible. This term is smaller than A but not 
negligible. 

Relaxation Effect and the Ionization Potential 

In Density-Functional theory, the eigenvalue of the kth electron is obtained from 
Eq. (7) (refs 3 .4). Also the IP can be calculated from Eq. (9) 

(31) 

The exact evaluation of this integral accounts for the relaxation of the orbitals upon 
ionization, and defines the relaxed IP .. 

In the Hartree-Fock theory, neglecting relaxation, the eigenvalue is independent 
of the occupation number,lk, and the integral (31) becomes 

(32) 

ur means unrelaxed and r relaxed. Equation (32) is Koopmans' theorem, and gives 
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an approximation to the IP from a single, self-consistent field (SCF) calculation. 
There are no correction terms. 

In the non-self-interaction corrected LSD theory, the eigenvalue Bk depends heavily 
on the occupation number of the kth orbital, ik' through the Coulomb and Exchange 
terms because the self-interaction energy is not exactly cancelled. Evaluating the 
integral (31) is difficult. An approximation is 

(33) 

TABLE II 

Values of A and B for the factor {A + BN.- 2 / 3} in the expression for the unrelaxed IP given by 
Eq. (30) 

Scheme A B 

GX 0'5 -0'062[2 + IINsl 
FE 0'5 -0'47[2 + liN.] 
GX-LSD-SI 0'315 0'062[1 - 1/ Ns] [7 + 51 N.] 
GX-SI 0'185 -0'062[2+ liN.] 
SIC-FE 0'142 -0'047[2 + liN.] 
GX-SIX 0'0 0'062[1 - liN.] [7 + 5IN.] 

0·5 

r== 
FE 
GX 

F GX-LSD-SI 

Relaxation ------------------0·2 GX-SI 

SIC 

GX-SIX 

0 9 
Ns 

18 

FIG. I 

The factor F= {A + BNs-2/3} for the LSD GX, LSD FE, GX-LSD-Sr, GX-Sr, SIC-FE and 
GX-SIX schemes versus Ns ' the number of spin s electrons, for N. equal 1 to 18 
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A further approximation can be made by defining a "transition state" as12 ,13 

(34) 

where the kth eigenvalue is from a single SCF calculation with a half-occupied kth 

orbital14, the Slater Transition State (TS). Equation (34) was also derived for the 
HF theory by Hedin and Johansson15 , and, calculations by Brandi, de Matos and 
Ferriera16 show that the concept of the Transition State is numerically valid, even 
in the HF theory. 

The correct, relaxed IP should be calculated by subtracting the total energy of the 
neutral atom from the SCF total energy of the positive ion 

(35) 

The relationship between the relaxed and unrelaxed IP's is therefore 

IP~ = IP~r + Rk , (36) 

where IP~r is given by Eq. (17) and 

(37) 

E: is lower than E:r because the SCF total energy is the minimum energy of the 
positive ion, and therefore, the relaxation correction, Rk , is negative. 

To compare the effects of the relaxation correction on the various schemes, the 
simplified I p~r expression derived above, together with an approximate expression 
for the relaxation energy, is used. 

Gopinathan 10 empirically determined 

(38) 

Assuming this relaxation energy to be similar for every scheme, it can be added to the 
expression for the Ipur (Eq. (30)) to give the Ipr 

where A' equals A - 0·22. The values of A' and B for the various schemes are in 
Table III. The effect of the relaxation energy on the factors {A' + BN;2/3} for these 
schemes is shown in Fig. 1; the curves must be compared to the new baseline, labelled 
"relaxation", which has the net effect of shifting down the vertical scale by 0,22. 

The negative of the eigenvalue in the GX-SI and SIC-FE schemes are a good ap
proximation to the relaxed IP for Ns greater than 4, because the relaxation energy is 
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nearly cancelled by the IP correction terms; the negative of the GX-SI eigenvalue is 
a slightly better approximation to its relaxed IP than the SIC-FE eigenvalue is to its 
relaxed IP. This is also true of the GX-LSD-SI eigenvalue for large N. values, but 
not of the LSD GX, LSD FE and GX-SIX eigenvalues. 

For large N s ' the full set of correction terms approaches -0'035, -0,078 and 
0·095 in the GX-SI, SIC-FE and GX-LSD-SJ schemes. Therefore the negative of the 
GX-SI eigenvalue is a slightly better approximate relaxed IP for systems with a large 
number of electrons. 

The difference between the original baseline, of Fig. 1, and the dashed, relaxation 
baseline is the approximate relaxation correction in HF theory, since the unrelaxed 
HF IP contains no correction terms to the negative of its eigenvalue, and the full set 
of correction terms to the negative of the GX-SIX eigenvalue approaches this limit 
asymptotically. Consequently, even though the negative of the GX-SIX eigenvalue 
is not a good approximation to the relaxed IP, it is a good approximation to the 
unrelaxed IP, and is the only scheme in which Koopmans' theorem can be used, 
albeit approximately. 

Transition State Eigenvalue 

Ipur was derived from the definition of I P in the section "Ionization Potentials" 
(hereafter referred to as Section II). In the previous section (Section III), the negative 
of the eigenvalue in the GX-LSD-SJ, SIC-FE and GX-SI schemes approximated 
well the IF' because the correction terms nearly cancelled the relaxation energy. 
However, the negative of the LSD GX and LSD FE eigenvalues are not good ap
proxi mations to either I pr or I pur because the total, local or non-local, self-inter
action potential is absent from the exchange potential. Finally, the negative of the 
GX-SIX eigenvalue is a good approximation to Ipur, and, obeys Koopman's theorem. 

TABLE III 

Values of A' and B for the factor {A' + B N.- 2/3} in the expression for the relaxed IP given 
by Eq. (34) 

-~------~------

Scheme A' B 

-~----

GX 0·280 -0'062[2 + I/Ns] 
FE 0'280 -0'047[2 + I/Ns] 
GX~LSD~ST 0'09S 0'062[1 - IINs] [7 + SINs] 
GX-SI --0'350 -0'062[2 -+- liN.] 
SIC-FE -0'078 --0'047[2 + I/Ns] 
GX-STX -0,220 0'062[ I - II Ns] [7 -+ SINs] 
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2290 Manoli, Whitehead: 

These conclusions use the fully occupied kth orbital to derive expressions relating 
the IP and the eigenvalue. The expression for the Transition State eigenvalue for 
a half-occupied kth orbital (Eq. (34)) can be evaluated in the unrelaxed orbital 
approximation to relate it to the fully occupied orbital eigenvalue. 

The transition state electron densities can be written in terms of the densities of the 
neutral atom as 

(40) 
and 

n!(r) = n~(r) - tn~(r) . (41) 

The superscript 0 indicates an electron density at full occupancy of the kth orbital, 
ik equals 1. Evaluating the partial derivative of the total Energy expression at it 
equal t and using Eqs (40) and (41) as well as the same approach as in Section II 
gives the TS eigenvalue, e~, 

e: = ek + [ -t<uk(r) uk(r')!!uk(r) uk(r') ]GX/LSO-Sl + 

+ {(t)1/3 - I} [6ClXs1<uk(r)! n~1/3(r) !uk(r)]SI/LSO-SI/SIC + 

+ !ClXlim(1 + B1) <u~(r)! {n~(r) + B2n~(r)} -2/3 !u;(r) -

- !ClXlim t(1 + B2) <ui(r)! {n~(r) + Bln~(r) + Bln~(r)} x 

x {n:(r) + B2n~(r)} -S/3!ui(r) - 3,d IP corr. (42) 

The fourth and fifth terms in Eq. (42) are exactly the negative of the 1st and 2nd I P 
correction terms in Eq. (24) of Section II. The coefficient of the third term in Eq. (42) 
can be written as a fraction of the IP-LSD-SI correction term also in Eq. (24). 

e~ = ek + [ -t<uk(r) uk(r')!!uk(r) uk(r') ]GX/LSO-SI - • 

- O'825[IP-LSD-SI corr.rl/LSO-SI/SIC - 1st IP corr. -

- 2Dd IPcorr. - ydIPcorr. (43) 

The eigenvalue of the TS can now be expressed in terms of the unrelaxed IP (Eq. 
(24)) as 

e~ = -IP:' + O·175[1P-LSD-SI corr.]SI/LSO-Sl/SIC. (44) 

The terms on the right-hand-side are evaluated for a fully occupied klh orbital. 
Using the inequality (29) to express the last factor in this expression in terms of 

the self-interaction integral, shows that this term equals zero in the LSD OX, LSD FE, 
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and GX-SIX schemes and -0'032,0'032, and 0·025 times the self-interaction integral 
in the GX-LSD-SI, GX-SI, and SIC-FE schemes and hence to a good approxima
tion, it can be neglected. 

Consequently, in the LSD GX and LSD FE schemes, the difference between the 
TS and fully occupied orbital eigenvalues from Eq. (43) is, to a first approximation, 
half the self-interaction integral, which is the same result that Gopinathan10 

obtained for the Xcx theory. Therefore, for these schemes, the calculation of the TS 
eigenvalue seems to be a way of correcting for the self-interaction potential which 
is not present in the one-electron exchange potential. 

In the GX-SIX scheme, this difference is approximately equal to zero, and as in 
the HF theory, the eigenvalue in the unrelaxed orbital approximation is independent 
of the occupation number, confirming Koopmans' theorem in the GX-SIX scheme. 
In the GX-SI, SIC-FE and GX-LSD-SI schemes, the eigenvalue difference is equal 
to the negative of the I P correction terms which are a good approximation to the 
relaxation energy discussed in Section III. 

Electron Affinity 

The electron affinity (EA) is the energy to remove an electron from a negative ion 
to infinity 

( 45) 

The extra electron is in the rnth orbital and the total electron density can be expressed 
as 

(46) 

where n~(r) is the neutral atom total electron density. The derivations in Section II 
and in the previous section (Section IV) can be repeated to give a set of similar 
equations in terms of the total electron density of the negative ion; the one-electron 
operators are of the negative ion. The EA expressions will be re-expressed in terms 
of the one-electron operators of the neutral atom, for two reasons: firstly, the most 
convenient reference point for the various one-electron eigenvalues and energies is 
the neutral atom total energy, and secondly, this approach is essential for deriving 
expressions for the electronegativity. 

The total energy of the negative ion is 

EGGX - = If/ulr)1 frlulr) + t I fJ/ui(r) u/r')llulr) u/r'» + 
i;l:m i,j~m 

s s' 

+ t Ifi<ui(r)1 V?GX-(r) lui(r) + t If/ui(r)1 V?GX-(r) Iui(r) . 
i=m I 
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This gives, 

EAm = - <um(r)1 f, + Lf/uir')lluir'» -
i*m 

• • 
- ~ClXlim{ L {n~(r) + B1ni(r)tlI3 n;(r) -t L {n~(r) + Bln;(r)} x 

i*m i*m 

x {n~(r) + B1ni(r)} -5/3 ni(r) + {n~(r) + 2Blnm(r)} {n~(r) + Binm(r)} -1/3 -

- tB1{n~(r) + Blnm(r)} {n~(r) + B1nm(r)}-5/3 nm(r) + 

+ [6CIXSln~3(r)rI/LSD-SI/SIC lum(r» - [t<um(r) um(r')llum(r) um(r') ]GX/LSD-SI + 

+ [tcIXSI<um(r)1 n~3(r) lum(r) ]SI/LSD-SI/SIC + 

+ !ClXllm(1 - B 1) <u;(r)1 {n~(r) + B1nm(r)} -2/3Iu;(r» -

- !ClXlirn t(l - B1) <u;(r)1 {n~(r) + Blnm(r)} {n~(r) + B1nm(r)} -5/3 lu;(r» -

• 
- ~ClXlim t<u;(r)1 L {n~(r) + B2ni(r)} -5/3 n;(r) lu;(r» + 

i#:m 

• 
+ ~ClXlim~<u;(r)1 L {n~(r) + Blni(r)} {n~(r) + B1ni(r)}-S/3 ni(r) lu;(r». 

i*m 
(47) 

The operator in the first bra-ket is equal to the neutral atom one-electron eigenvalue 
operator for the mth orbital, and hence, this term is not equal to the eigenvalue of 
the mth orbital 8m • The third, fourth, fifth, sixth, and seventh terms together are 
the equivalents of the IP-LSD-SI, 1"" 2nd, and 3rd IP correction terms, respecti
vely, defined in Eq. (28), for the m1h orbital, and will be referred to as the EA-LSD-SI, 
1"" 2nd, and 3rd EA correction terms, respectively. 

Finally, it is convenient to define a pseudo-eigenvalue, 8~, as 

• 
£~ + <um(r)1 f, + Lf/uir')llui(r'» - !ClXlim{ L {n~(r) + B1n;(r)} -2/3 n;{r) -

i*m i*m 
• - t L {n~(r) + Blni(r)} {n~(r) + B1n;{r)} -5/3 n;(r) + 

l*m 

(48) 
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so that the EA expression can be rewritten as 

EAm = -e~ - [2rI/SIX/SIC t<um(r) um(r')llum(r) um(r') + 

+ [lC(XSI<um(r)I n!/3(r) Ium(r» rI/LSD-SI/SIC + 15t EA corr. + 

+ 2nd EA corr. + 3rd EA corr., (49) 

where the [2rI/SIX/SIC factor in the second term equals one and not zero in the 
LSD GX and GX-LSD-SI schemes. 

The EA has been written in this form because, in the unrelaxed orbital approxima
tion, for some open shell atoms such as boron and fluorine, the pseudo-eigenvalue 
e~ will exactly equal the eigenvalue of the kth orbital of the neutral atom, which 
means that under these conditions the difference between the IP, given by Eq. (28), 
and the EA is, to a first approximation, the self-interaction integral in all schemes. 

Electronegativity of Free Atoms 

The electro negativity of a free atom is a measure of the power of an atom to attract 
an electron. Mulliken17 - 19 defined the electro negativity of an atom as the average 
of the IP and EA 

x = HIP + EA}. (50) 

In the unrelaxed orbital approximation, this expression can be evaluated using the 
equations for the IP and EA (Eqs (28) and (49), respectively), 

x = -t(ek + e~) + [t<ul(r) uir')lluk(r) uk(r'» ]GX/LSD-SI -

- [2rI/SIX/SIC t<um(r) um(r')llum(r) um(r'» + [iC(XSI{ <uk(r)1 n~/3(r) Iuk(r» + 

+ <um(r)1 n!/3(r) lum(r»}]SI/LSD-SI/SIC - ~c(Xlim{(1 + B1) <ui(r)1 x 

x {n~(r) + B2nk(r)} -2/3Iu;(r» - (1 - IJ1) x 

x <u;'(r)I {n~,(r) + B2nm(r)}-2/3Iu;'(r»} + ~c(Xlimt{(l + B2) x 

x <ui(r)1 {n~(r) + Blnk(r)} {n~(r) + B2nk(r)} -s/3Iu;(r» -

- (1 - B2 ) <u;'(r)1 {n~,(r) + Blnm(r)} {n;,(r) + B2nm(r)} -s/3Iu;'(r»} + 
• 

+ ~c(Xlim t{ <u;(r)1 L: {n;(r) + B2nj(r)} -S/3 nj(r) Iu;(r» -
j~k 
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s' 

- <u;(r)1 I {n~(r) + B2nj(r)}-S/3 nlr) lu;(r»} -
j"'m 

• 
- ~ccxllm ~{<u;(r)1 I {n~(r) + B2nj(r)} -8/3 {n~(r) + Blnlr)} nj(r) luUr» -

1 "'It 

s' 

- <u!(r)1 L {n:,(r) + B2n;{r)} -8/3 {n~,(r) + Bln;(r)} n;{r) lu;,(r»} , 
I"'m 

(51) 

where the last four terms will be small. 

For open shell atoms, which have kth and m1h orbitals with the same principal, 
and azimuthal quantum numbers and spin, these terms cancel exactly in the un
relaxed orbital approximation; the pseudo-eigenvalue 8~ will equal the orbital eigen
value 8k' Therefore the electronegativity is 

XOp = -81t + [-t<u.I;(r) uk(r')//uk(r) uk(r')rl/SIX/SIC + 

+ [tccxsf<uir)/ n~/3(r) Iuk(r» rl/LSD-SI/SIC + 

+ !ccxllmBl<u~(r)/ {n~(r) + B2nk(r)}-2/3/u;(r» + 

+ !ccxllm iB2<u~(r)1 {n~(r) + Blnk(r)} {n~(r) + B2nk(r)} -S/3/u;(r» -

- ~ccxllm 1<u:(r)1 {n~(r) + B2nk(r)} - S/3 lu:(r» + 

+ ~ccx1im ~<u~(r)1 {n~(r) + B2nk(r)} -8/3 {n~(r) + Blnk(r)} lu:(r». (52) 

The last two terms in Eq. (52) are from the incomplete cancellation of the terms 
in the summations of the last two terms of Eq. (51), but since they are of the order 
of u:(r), they will be neglected. 

Clearly, the negative of the fully occupied orbital eigenvalue in the LSD OX and 
LSD FE schemes is, approximately, the electronegativity of the free atom. This is 
the same result that Bartolotti, Oadre and Parr18 and Manoli and Whitehead 19 

derived for the Xcx theory. The method used by the latter authors is the same as the 
one used in this work, but this work includes the correction terms to the IP, EA 
and electronegativity. 

For discussion purposes, the theories in this work divide into two classes: the 
theories which contain the exact, non-local self-interaction integral (the OX-SI, 
OX-SIX and SIC schemes) will be the SI theories, while the schemes which have 
a completely local exchange potential (the LSD OX, LSD FE, Xcx and OX-LXD-SI 
schemes) will be the LSD theories. The electro negativity in these theories will be 
discussed for open and closed shell atoms. 
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Since DF theory allows the use of non integer occupation numbers of the orbit
als3 Y,2o - 22, it is possible to find a transition state of the atom that can be used 
to calculate the electro negativity directly. Clearly, since Mulliken's definition of the 
electro negativity (50) defines the electro negativity as the average of the IP and EA, 
and, since the IP in the LSD schemes is given by a transition state which has a half
occupied kth orbital, while the EA is given by a transition state with a half-occupied 
mth orbital, then the eigenvalue of the neutral ground state of the atom should cor
respond to the average of the negative of the IP and EA, the electro negativity. This 
is the argument of Bartolotti. Gadre and Parr20 for the electro negativity in the XCX 
theory. The situation is not as straightforward for the other schemes discussed in 
this work, however a transition state can be found whose eigenvalue corresponds 
directly to the negative of the electronegativity. 

The transition state used to calculate the electronegativity must reflect the charac
teristics of I P and EA. Consider an electro negativity transition state(x-TS) where 
a portion of an electron is removed from the highest occupied atomic orbital (HOAO), 
kith orbital, and placed in the lowest unoccupied atomic orbital (LV AO), m'tb 

orbital, by Hund's rules. These partial electrons either do or do not have the same 
spin. 

The Electronegativity Transition State Involving Partial Electrons with 
Parallel Spins 

The kith and m'th orbitals have the same spin. Therefore, neglecting the orbital relaxa
tion, this implies 

and 

n!(r) = n~(r) - nk(r) + n1·(r) + nm.(r) 

nk·(r) = I~nl(r) 

(53) 

(54) 

(55) 

since the occupation numbers of the fully occupied k tJa and mtb orbitals, Ik and 1m 
respectively, equal one. In addition 

(56) 

to conserve the charge in the x-TS. 
The eigenvalues of the partial electrons can now be calculated from Eq. (7) and 

the approach used in Sections II and III gives 

e~. = e~ + Uk' - 1) <u",(r) u.(r')llu",(r) uk(r') + 

+ [Jm·]GX/LSD-SI <um(r) u",(r')llu",(r) u.(r') + 
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+ (J~~3 - 1) [6CIXS1<um(r)I n~/3(r) Ium(r) rI/LSO-SI/slc -

- ~ClXlim(fk' - 1) <u,nCr) uk(r)1 {n~(r) + B2nk(r)} -2/3 -

- H n~(r) + BInk(r)} {n~(r) + B2nk(r)} -5/3Ium(r) uk(r) -

- ~ClXlim(fk' - 1) <ulII(r) uk(r)1 {n~(r) + B2n,nCr)} -2/3 -

- Hn~(r) + BInm(r)} {n~(r) + B2nm(r)t5/3IUm(r) uk(r) -

- ~ClXlim 2[B2(Jm' - 1) + fm.] <u~(r)1 {n~(r) + B2nm(r)} -2/3/u;,(r) + 

+ ~ClXlim 2[BIUm' - 1) + fm'] l<u;,(r)/ {n~(r) + BInm(r)} X 

X {n~(r) + B2nm(r)} -S/3/u;,(r) + ~ClXlim 2(1k' - 1) X 

2 \ s 

X <um(r) Uk(r)/ ! I {n~(r) + B2n;(r)} - 5/3 n;(r) - ~ I {n~(r) + 
;;"k' ,m' =k ;;"k' ,m' =k 

s 

+ ~ClXlim 2fm,<u;,(r)/1 L {n~(r) + B2n;(r)} -5/3 -
i::#k',m'=k 

s 

- ~ L {n~(r) + BIn;(r)} {n~(r) + B2n;(r)} -S/3/u;,(r), (57) 
i::#k',m'=k 

where e~ is defined by Eq. (46). The X-TS eigenvalue of the k,th electron can be cal
culated in a similar manner. 

Ilr, = Ilk + fm·<uk(r) um(r')I/uk(r) um(r') + 

+ [(fk' - 1) <uk(r) uk(r')I/uk(r) uk(r,)]GX/LSO-SI + 

+ (J~j3 - 1) [6ClXs1<uk(r)/ n~/3(r) IUk(r)rl/LSO-SI/slc -

- ~ClXlim 2(BI + 1) Uk' - 1) <u~(r)1 {n~(r) + B2nir)} -2/3/u~(r) + 

+ ~ClXlim 2(B2 + 1) Uk' - 1) 1<u~(r)1 {n~(r) + BInk(r)} X 

X {n~(r) + B2nk(r)} -5/3Iu~(r) - ~ClXlimfm' X 

x <uk(r) um(r) I {n~(r) + B2nm(r)}-2/3 - Hn~(r) + Blnm(r)} x 

x {n~(r) + B2nm(r)} -5/3Iuk(r) um(r) - ~ClXlimfm' X 

Collection Czechosloyok Chem. Commun. (Vol. SJ) (1988) 



-----_ ..... ----------------------
Generalized Exchange Local-Spin DF Theory 

x <uk(r) um(r) I {n~(r) + B2nk(r)}-2/3 - Hn~(r) + Blnk(r)} X 

x {n~(r) + B2nk(r)} -5/3Iuk(r) um(r» + 
• 

+ !calim 2(Jk' - 1) <u~(r)1 i L {n~(r) + B2ni(r)} -5/3 ni(r) -
i::l=k',m'=k 

• 
- g L {n~(r) + Bln;(r)} {n~(r) B2ni(r)} -8/3 n;(r) Iu~(r» + 

i=l=k',m'=k 

• 
+ !calim 2Im,<uk(r) um(r)1 i L {n~(r) + B2n;(r)} -5/3 n;(r) -

i#,k',m'=k 
• 

~ L {n~(r) + Blni(r)} {n~(r) + B2ni(r)} - 8/3 n;(r) IUk(r) um(r» . 
i#,k',m'=k 

The electronegativity can now be obtained directly by using 

x = -:HB~' + B~') . 

2297 

(58) 

(59) 

Adding Eqs (57) and (58) while recalling that the charge in these partially filled 
orbitals must add up to one gives 

x = -!(B~ + Bk) - t[Jm,]GX/LSO-SI <um(r) um(r')llum(r) um(r'» -

- ![(Jk' - 1) <uk(r) uk(r')lluk(r) uir'» ]GX/LSO-SI -

- t(f:':'3 - 1) [6casl<um(r)I n,!!3(r) Ium(r» rl/LSO-SI/SIC -

- t(J~!3 - 1) [6casl<uir)I n~/3(r) Iuk(r» JSl/LSO-SJ/SIC + 

+ ~calim[BI(Jm' - 1) + 1m'] <u!(r)1 {n~(r) + B2nm(r)} -2/3Iu!(r» + 

+ !C(Xlim(BI + 1) (Jk' - 1) <u~(r)1 {n~(r) + B2nk(r)} -2/3Iui(r» -

- !calim[B2(J ... , - 1) + 1m'] f<u!(r)1 {n~(r) + BInm(r)} X 

X {n~(r) + B2nm(r)} -5/3Iu!(r» - !ca1im(B2 + 1) Uk' - 1) X 

X f(u~(r)1 {Il~(r) + BInk(r)} {Il~(r) + B2nir)} -5/3Iu:(r» -

• 
- lcaliml m,<u!(r)I i L {n~ + B2ni(r)} -5/3 ni(r) -

i=J;k',m'=k 

• : L {n~(r) + Bln;(r)} {n~(r) + B2ni(r)} -8/3 ni(r) lu!(r» -
i:#k',m'=k 

Collection Czechoslovak Chern. Cornrnun. (Val. 53) (1988) 



2298 Manoli, Whitehead: 

• 
- ~clXlim(fk' - 1) <uHr)1 t L {n~ + B2ni(r)}-S/3 nJr)-

i#:k',m'=k 

• 
~ L {n~(r) + Blni(r)} {n~(r) + B2ni(r)} -8/3 ni(r) Iu;(r» , (60) 

i:;l:k',m'=k 

where the <uk(r) um(r')lluk(r) um(r') and all the Iuk(r) um(r» terms add up exactly 
to zero because of the conservation of charge (Eq. (56» in the X-TS. 

Any atom whose x-TS involves partial electrons of parallel spins can only be an 
open shell atom such as boron or fluorine because the x-TS is built according to 
Hund's rules. Therefore, the electro negativity expression (60) is only valid for open 
shell atoms which means that, in the unrelaxed approximation, the kth and mth 
orbitals are the same. In this case, Eq. (60) becomes 

xOP = -Ilk + [-t<uk(r) uk(r')lluk(r) uk(r'»JSI/SIX/SIC -

- {t(f~f3 + f~~3) - I} [6CIXS1<uk(r) I n~/3(r) IUk(r»JSI/LSD-SI/Slc_ 

- ~ClXlimBl <ui(r)1 {n;(r) + B2nk(r)} -2/3 lu~(r» + 

+ ~ClXlim tB2<ui(r)1 {n~(r) + Blnk(r)} {n~(r) + B2nk(r)} -S/3Iui(r» , 
(61) 

where the conservation of charge (Eq. (56» has been used. It is important to note 
that the only term that depends on the fractional occupation numbers of the kth 
and mth orbitals ;s the third term. This electronegativity expression can be compared 
with the one derived previously from the definition of the I P and EA for open shell 
atoms, Eq. (52). 

Therefore, in all schemes, the negative of the average of the eigenvalues of the 
fractionally occupied HOAO and LUAO is a very good approximation to the 
electronegativity of the open shell atoms. In addition, in the LSD GX and FE 
schemes, the negative of the eigenvalue of the fully occupied kth orbital is the electro
negativity of the open sheIl atoms, which is the same result that was derived 
earlier. t 2 .20.21.23 

The Electronegativity Transition State Involving Partial Electrons of Opposite 
Spins 

The k,th and m,th do not have the same spin. Therefore, neglecting orbital relaxation, 
the eigenvalue of the m,th orbital is 

Il~' = <um.(r)1 fr + L i/u/r')lluir'» lum,(r» + 
j=m' 
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+ [-/m,<um,(r) um.(r')llum.(r) um,(r,)]SI/SIX/SIC + 

+ [6cO(SI<um.(r)1 n!p(r) lum,(r» ]SI/LSD-SI/SIC -

s' 

- ~cO(lim<Um.(r)1 L {n!,(r) + B2nj(r)} -2/3 n;(r) -
i=m' 

s' 

- ~ L {n!,(r) + Bln;(r)} {n!,(r) + B2n;(r)} -5/3 n;{r) + 
i=m' 

+ {n!,(r) + 2Blnm.(r)} {n!,(r) + B2nrn.(r)} -2/3 -

2299 

- tB2{n!,(r) + Blnm,(r)} {n!,(r) + B2nm,(r)} -5/3 nm,(r) Ium,(r», (62) 

where 

Using the same techniques as in the previous section gives 

Il~' = Il~ + [Jm,]GX/LSD-SI <um(r) umCr')llum(r) um(r'» + 

+ (J!f.3 - t) [6CO(SI<um(r)I n!!3(r) Ium(r» rI/LSD-SI/SIC -

- !fcO(lirn 2[B1(Jm' - t) + 1m'] <u;,(r) I {n~,(r) + B2nm(r)} -2/3Iu;(r» + 

+ ~cO(lirn 2[B2(Jm' - 1) + 1m'] t<u;,(r)1 {n~,(r) + Blnm(r)} X 

X {n~.(r) + B2nrn(r)} -5/3Iu;,(r» + ~cO(lirn 21m' X 

.IIi' s' 

X <u;,(r)I1 L {n~,(r) + B2nj(r)} -5/3 n;(r) - ~ L {n;,(r) Blnj(r)} X 
i=l:m' i:l=m' 

(63) 

(64) 

Similarly, the eigenvalue of the kith orbital can be calculated, and expressed in terms 
of the eigenvalue of the fully occupied kth orbital Ilk and in terms of the ground state 
total electron density of the spin s electrons by using 

This gives 

Il~' = Ilk + [(Jk' - 1) <uk(r) uk(r')lluk(r) uk(r,)]GX/LSD-SI + 

+ 9(Jif3 - 1) [6cO(sl<uk(r)1 n~/3(r) Iuk(r» rI/LSD-SI/SIC -
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- !CCllim 2(B2 + 1) Uk' - 1) (u;(r)j {lI~(r) + B2Ilk(r)} -2/3jui{r» + 

+ !CCllim 2(B2 + 1)(J~, - IH(u~(r)j {Il~(r) + Btllk(r)} X 

X {n~(r) + BZnk(r)} -5/3Iu~(r» + lCCllim 2(J~, - 1) X 

s s 

X (u;(r)j i L {fl~(r) + BZl1 i(r)} -5/3 l1i(r) - ~ L {11~(r) + Bll1i(r)} X 
i*k' i*k' 

The electronegativity can now be calculated using Eq. (59) 

x = -!(ek + e~) + [!(uk(r) uk(r')jjuk(r) uk(r') ]GX/LSO-SI -

- [2r'/SIX/SIC t(um(r) um(r')jjum(r) um(r') -

- t(f~!3 - 1) [6CClSI(uir)jl1~/3(r) jUk(r» ]SI/LSO-SI/SIC -

- !(J!~3 - 1) [6CClS1(um(r)jl1;,I3(r) jum(r» ]SI/LSO-SI/SIC __ 

- ~CCllim{(1 + Bd (u~(r)j {11~(r) + B2I1k(r)t2/3Iu;(r» -

- (1 - BI ) (u;(r)j {11;.(r) + B2Ilm(r)} -2/3Iu,!(r»} + 

(66) 

+ ~CCllim H(l + Bz) (u~(r)j {/l~(r) + Bll1k(r)} {Il~(r) + B2nk(r)} -5/3ju~(r» -

- (t - Bz) (u;(r)1 {11;,(r) + BIllm(r)} {11;,(r) + B2I1m(r)}-S/3Iu;.(r»} + 

• 
+ ~CCllim H(u;(r)1 L {n~(r) + B2I1i(r)} -5/3 ni(r) luNr» -

i*k' 
s' 

- (u;(r)1 L {n;,(r) + Bznlr)t 5/3 l1i(r) Iu;'(r»} -
i*m' 

s 

- ~CCllim ~{<u;(r)1 L {n~(r) + B2I1i(r)} -8/3 {n~(r) + Bll1i(r)} n;(r) lu;(r) -
i*k' 

s' 

- (u;(r)1 L {11;,(r) + B2n;(r)} -8/3 {n;,(r) + BII1;(r)} /li(r) lu;,(r»} 
i*m' 

(67) 

which is very close to the electronegativity expression (51), the difference being the 
presence of the fourth and fifth terms in Eq. (67) instead of the IP-LSD-SI and 
EA-LSD-SI correction terms, respectively. If !k' and!m' are equal to t, the difference 
between these terms and the corresponding LSD-SI correction terms is negligible. 
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Therefore, this electronegativity expression is a very good approximation to the 
general electronegativity equation (51) which was derived rigorously from the un
relaxed I P and EA. 

RESULTS 

The GX-LSD-SI and GX-SIX results are not included, because they are worse 
than the ones presented, because these schemes have exchange potentials that violate 
the sum rule (ree). 

Ionization Potentials 

Table IV gives the IP's of the helium to krypton atoms calculated using the FE, XCl 
and GX schemes. The ct'S used for the XCl calculation are the spin-polarized ctHF 

(refs24 ,25). In the GX scheme, the Free Electron Limit Fermi hole parameters were 
used 2 . 

The first column under each heading contains the TS eigenalues, calculated by 
removing half an electron from the kth orbital and subsequently doing an SCF 
calculation. The negative of the resulting eigenvalue of the remaining half an electron 
is the E~ or IP. 

The second column contains the corrected eigenvalue IP's, I p~crr. After the SCF 
calculation of the neutral atom with all its orbitals at full occupancy, the resulting 
wavefunctions are used.to evaluate the IP correction terms in Eq. (24). These are 
added to the eigenvalue. No SCF procedure is required other than the initial neutral 
atom calculation. 

The FE and GX IP~orr are better than the corresponding TS IP's when compared 
to experiment26, while some XCl TS IP's are better than the corresponding IP~orr 
and some are not. For the transition metals, the GX IP~orr are the best. 

The corrected eigenvalue method can also be used with the SI schemes. Table V 
gives the IP~orr for the helium to krypton atoms calculated using the SIC-FE scheme9 

and the GX-SI scheme5 with the Free Electron Limit Fermi hole parameters2 • The 
SIC_FEIP~orr are slightly better than the GX-SI ones but overall they are close, and 
also close to experiment. 

The deviation of each calculated IP, Tables IV and V, from the experimental value 
can be expressed as a percentage. These percentages can be averaged for all atoms 
to give the average percentage deviation from experiment. Table VI lists the average 
percentage deviations for the schemes discussed in this work for both the TS and 
corrected eigenvalue I P's. These results indicate that the corrected eigenvalue I P 
method works very well for all DF schemes. Furthermore, numerically the difference 
between the best LSD and SI IP~orr are small hence, correcting the LSD schemes for 
self-interactions does not affect the trends of these IP's. 
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TABLE IV 

The TS and corrected eigenvalue Irs of helium to krypton compared to the experimental ones. 
Energies in eV (1 eV = 96'4868 kJ mol-I) 

FE X(X GX 
Atom Exp. 

-8~ IP~orr -8~ lP~orr -8~ IP~orr 

He 22'60 23'63 24·22 25'09 25'69 26·41 24'58 
Li 5'12 5'02 5'67 5·53 5'85 5-67 5'39 
Be 7·79 8'02 8'43 8'60 8'72 8'82 9'32 
B 7·46 8'01 8'38 8·43 7'57 8'02 8·29 
C 10'65 11-81 11'82 12'94 11·24 11'57 11'26 
N 13·87 15-61 15'21 16'92 13-49 15'24 14'54 
0 11·77 13-84 12'56 14'55 11'96 13·98 13'61 
F 16'13 19'02 17·21 20'03 15-83 18·73 17'42 
Ne 20'36 24'01 21'66 25'24 19'81 23-48 21'55 

Na 4'93 4'87 5·25 5·16 5'63 5'48 5·13 
Mg 6'57 6·76 6·92 7'08 7'35 7'43 7-64 
Al 5'12 5·33 5'53 5'74 5'29 5'39 5'98 
Si 7'39 7·87 7'94 8'41 7'80 7'77 8'14 
P 9'63 10'35 10'31 11'01 10'00 10'18 11'00 
S 8'74 9'70 9'26 10'15 9'03 9'87 10'35 
CI 11'66 12'86 12'24 13-47 11'59 12'77 13'01 
Ar 14·43 15'89 15'20 16'64 14·22 15-68 15'75 

K 4'08 4'04 4'31 4'26 4'62 4'52 4'33 
Ca 5'19 5'33 5·43 5'55 5'78 5'94 6'11 
Sc 5·46 5'60 5'68 5'80 6'10 6'17 6'56 
Ti 5'64 5'77 5·86 5·96 6·33 6'38 6'83 
V 6·71 5'91 6'96 6'09 7'07 6'56 6'74 
Cr 7'00 7'31 7'25 7'55 7'38 7'59 6'76 
Mn 6'08 6'16 6'28 6'34 6'87 6'88 7·43 
Fe 6'73 6'92 6'95 7'13 7·43 7'52 7'89 
Co 7·35 7'50 7'59 7·72 ~7'85 8·06 7-86 
Ni ~7'45 7'99 7'70 8'22 7'98 8'53 7·63 
Cu 7'56 7'82 7-85 8'05 8'11 8·25 7·72 
Zn 8'45 8·82 8·71 9'07 9'11 9'36 9'39 
Ga 5'16 5·36 5·43 5'63 H2 5'53 6'00 
Ge 7'19 7'63 7'54 7'97 7·64 7'62 7-88 
As 9'09 9'71 9'52 10'13 9·49 9'63 9'81 
Sc 8'25 9'02 8'55 9'31 8'56 9·26 9'75 
Br 10'62 11'59 11'02 11'98 10'64 11'58 11'84 
Kr 12'84 13·96 13'33 14·44 12·73 13'85 13'99 

--~-
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TABLE V 

The corrected eigenvalue Irs of helium to krypton calculated using the SIC-FE and GX-SI 
schemes, compared to the experimental ones. Energies in eV 

Atom SIC-FE GX-SI Exp. 

He 24'98 24'98 24'58 
Li 5'37 5-22 5'39 
Be 8·49 8'32 9'32 
B 8'79 7'72 8'29 
C 12'63 11'18 11'26 
N 16'46 14'75 14'54 
0 14'53 13-43 13-61 
F 19'71 18'05 17'42 
Ne 24'69 22'69 21'55 

Na 5·18 5'09 5'13 
Mg 7'14 7'04 7'64 
Al 5'73 5'09 5'98 
Si 8'33 7·44 8'14 
P 10'87 9'83 11'00 
S 10·27 9'55 10'35 
Cl 13-47 12·42 13'01 
Ar 16'55 15'30 15'75 

K 4'82 4·22 4'33 
Ca 5'64 5'54 6·11 
Sc 5'88 5'83 6'56 
Ti 6'05 6'03 6'83 
V 6'21 6'19 6'74 
Cr 7'25 7'01 6'76 
Mn 6·49 6'49 7·43 
Fe 7'19 7'09 7-89 
Co 7'74 7'60 7-86 
Ni 8'21 8·04 7'63 
Cu 7·77 7-56 7'72 
Zn 9'03 8'83 9'39 
Ga 5'74 5·22 6'00 
Ge 8'05 7'30 7·88 
As 10'19 9'30 9'81 
Se 9'54 8'99 9'75 
Br 12'14 11·27 11-84 
Kr 14'56 13'53 13'99 
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Electronegativities 

The electronegativities of free atoms can be derived by defining a neutral atom transi
tion state that reflects the ground states of the positive and negative ions, and cor
responds to a state half-way between the ground state configurations of the positive 
and negative ions. Although this is a mythical excited state of the neutral atom, it 
is mathematically valid within the framework of density-functional theory because 
the latter allows the use of non-integer occupation numbers of orbitals.3.12.13.22 

The spin-polarized electronegativity transition states of the helium to krypton 
atoms, are the ones defined by Manoli and Whitehead.23 

It is important to note that these x-TS apply to calculations using the SI schemes. 
For the LSD schemes which have an orbital independent exchange potential, such 
as the LSD FE and XCX schemes, removing a half-electron from the HOAO and 
placing it in the LUAO gives, for some open-shell atoms, a X-TS which is exactly 
the same as the ground state electronic configuration. However, this is not true for 
self-interaction corrected schemes, because the exchange potential is always orbital 
dependent due, in part, to the presence of the exact, non-local self-interaction poten
tial in the one-electron eigenvalue equation. Table VII gives the electronegativities of 
the helium to krypton atoms calculated using Eq. (59) with the FE, Xcx, GX, SIC-FE 
and GX-Sl schemes. Most of the Xcx X's are those calculated by ManoIi and White
head.23 These authors spin-averaged the eigenvalues with the same principal and 
azimuthal quantum numbers for some atoms such as the Noble gases. This is not 
done in this work. The is of the lithium and boron atoms are equal to those cal
culated by Sen27. The Xcx is of the transition metals in this work are close but 
not equal to those calculated by Bartolotti et al. 20 ,21 because these authors used 
different X transition states. The G X, FE and Xcx schemes predict the electronegativi
ties of aluminium and calcium lower than magnesium and potassium, respectively. 
These trends are incorrect. However, overall, the trends of the GX, FE and Xcx X's 
are the best when compared to electronegativities calculated by various other meth
ods. 27 - 33 The SIC-FE scheme gives X's that are significantly greater than those 
calculated using the other schemes while the GX-SI X's are close to the LSD ones. 

TABLE VI 

Average percentage deviation of the -liZ and IPiorr for the various schemes from the cor
responding experimental IP's for the helium to krypton atoms 

Calculated 
quantities 

FE Xcx GX SIC GX-SI 

------- .. ---.-~ ._----- ._------

LI( -8~). % 10'4 6'5 6·7 
LlUPiorr), % 7,) 6·7 5'0 5·4 6'3 

Collection Czechoslovak Chern. Commun. (Vol. 53) (1988) 



Generalized Exchange Local-Spin DF Theory 2305 

TABLE VII 

Electronegativities (in eV) of the helium to krypton atoms (Eq. (57» with the FE, XIX, GX, GX-SI 
and SIC-FE schemes 

---_._- -~~~- ---~- -

Atom FE XIX GX GX-SI SIC-FE 
~- --------

He 10'57 11'45 12'30 11'18 
Li 2'15 2'54 2'76 2·42 4·97 
Be 2·47 3'48 3'48 3,19 

B 3·29 4'05 3'31 3·06 7·43 
C 5'33 6'33 5'13 4·66 10'00 
N 5'58 6'42 5·47 4'93 
0 5·71 6·42 5'73 4·93 
F 8'87 9'84 8'54 7·46 
Ne 9'45 10'15 9·39 8'63 

Na 2'10 2'32 2·68 2'37 4'66 
Mg 2'56 2'81 3'05 2·78 5·18 
AI 2'35 2'70 2·45 2·22 5'10 
Si 3'91 4'39 3-85 3'50 7·05 
P 4'30 4'76 4'34 3-95 7·65 
S 4'74 5·18 4·87 4·40 8·28 
CI 6'92 7'50 6'82 6'26 10'80 
Ar 6'64 7'07 6'73 6'30 9'81 

K 1·75 1'92 2·23 1'97 3-86 
Ca 1'50 1·74 1·72 1'80 
Sc 2·77 2'90 3·21 2'75 4'64 
Ti 2·86 3'01 3'31 2'86 4'86 
V 2'95 3'11 3·42 2'97 5·06 
Cr 3'04 3·20 3'52 3'07 5'28 
Mn 3'40 3'56 3'84 3'26 5'52 
Fe 3'50 3-67 ~3'9 3'38 5'73 
Co ~3-6 3'77 ~4'0 3-49 5·92 
Ni ~3'7 3-86 ~4'1 3'59 6·10 
Cu ~3'1i 3-96 ~4'2 3-68 6'27 
Zn 3'32 3'50 3'79 3-48 9'06 
Ga 2'32 2'55 2·49 2·26 5'07 
Gc 3'79 4'10 3-80 3-46 6'82 
As 4'12 4·41 4·22 3'86 7'27 
Se 4'51 4-80 4·70 4·27 7-80 
Br 6·37 6·74 6'36 5·85 9'91 
Kr 5'89 6'17 6·02 5·65 8'75 

... _-- -- --_._-
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CONCLUSIONS 

The corrected eigenvalue method of calculating IP's for both the LSD and SI 
schemes predicts the best results when compared to those calculated using other IP 
schemes34. This method eliminates the need for the unphysical transition state 
concept of removing half an electron to calculate the IP in the LSD schemes and, it 
compensates for the fact that the eigenvalues calculated using most of the SI schemes 
do not obey Koopmans' theorem. This method is also the most economical since 
it does not require a subsequent SCF calculation after the ground state one to obtain 
the IP of the atom. 

Electronegativities cannot be uniquely defined nor measured directly35 and 
hence, they can be calculated using a variety of methods20-23.27-33 which define 
the orbitals around the atom in the molecule in different ways, e.g. the atomic 
valence state. Hence, the concept of defining a X-TS with non-integer occupation 
numbers can be exploited to derive electronegativities and this gives good results 
for the LSD schemes. 

The Generalized Exchange shceme, with or without the self-interaction correction, 
predicts I P's and X's which are as good as, if not better, than other LSD and SI schemes 
without the use of adjustable parameters such as the O(HF. 

This research was supported by the NSERC(Canada). 
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